Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.253
Filtrar
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 426-431, 2024 Apr 10.
Artigo em Chinês | MEDLINE | ID: mdl-38565507

RESUMO

OBJECTIVE: To explore the correlation between clinical phenotypes and genotypes among 46 children with SCN1A-related developmental epileptic encephalopathy (DEE). METHODS: Clinical data of 46 children with DEE and SCN1A variants identified at the Guangzhou Women and Children's Medical Center between January 2018 and June 2022 were collected. The children were grouped based on their age of onset, clinical manifestations, neurodevelopmental status, and results of genetic testing. The correlation between SCN1A genotypes and clinical phenotypes was analyzed. RESULTS: Among the 46 patients, 2 children (4.35%) had developed the symptoms before 3 months of age, 42 (91.30%) were between 3 to 9 months, and 2 cases (4.35%) were after 10 months. Two cases (4.35%) presented with epilepsy of infancy with migrating focal seizures (EIMFS), while 44 (95.7%) had presented with Dravet syndrome (DS), including 28 cases (63.6%) with focal onset (DS-F), 13 cases (29.5%) with myoclonic type (DS-M), 1 case (2.27%) with generalized type (DS-G), and 2 cases (4.55%) with status epilepticus type (DS-SE). Both of the two EIMFS children had severe developmental delay, and among the DS patients, 7 cases had normal development, while the remaining had developmental delay. A total of 44 variants were identified through genetic sequencing, which included 16 missense variants and 28 truncating variants. All EIMFS children had carried the c.677C>T (p.Thr226Met) missense variant. In the DS group, there was a significant difference in the age of onset between the missense variants group and the truncating variants group (P < 0.05). Missense variants were more common in D1 (7/15, 46.7%) and pore regions (8/15, 53.3%), while truncating variants were more common in D1 (12/28, 42.9%). Children with variants outside the pore region were more likely to develop myoclonic seizures. CONCLUSION: The clinical phenotypes of DEE are diverse. There is a difference in the age of onset between individuals with truncating and missense variants in the SCN1A gene. Missense variants outside the pore region are associated with a higher incidence of myoclonic seizures.


Assuntos
Epilepsias Mioclônicas , Canal de Sódio Disparado por Voltagem NAV1.1 , Criança , Humanos , Feminino , Pré-Escolar , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsias Mioclônicas/genética , Fenótipo , Genótipo , Testes Genéticos , Convulsões/genética , Mutação
2.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 432-436, 2024 Apr 10.
Artigo em Chinês | MEDLINE | ID: mdl-38565508

RESUMO

OBJECTIVE: To retrospectively analyze the clinical phenotype and pathogenic variants in patients with Progressive myoclonus epilepsy (PME). METHODS: Clinical data and results of genetic testing for 11 patients diagnosed with PME at the Department of Neurology, the First Affiliated Hospital of Zhejiang University School of Medicine from June 2017 to December 2022 were collected and analyzed. RESULTS: All of the patients, including 4 males and 7 females, had predominant action myoclonus. Three patients had myoclonus as the initial manifestation, whilst eight were diagnosed through genetic testing, including three cases with NEU1 gene variants, two with EPM2A gene variants (1 was novel), one with MT-TK gene variant, one with ATN1 gene variant, and one with CSTB gene variant. No pathogenic variant was identified in the remaining three cases. Among the eight patients with a genetic diagnosis, three were diagnosed with sialidosis, two with Lafora disease, one with Dentatorubral-pallidoluysian atrophy (DRPLA), one with Unverricht-Lundborg disease (ULD), and one with Myoclonic epilepsy with ragging red fibers (MERRF). CONCLUSION: Compared with pediatric patients, adult patients with PME represent a distinct subtype with slower progression and milder cognitive impairment.


Assuntos
Epilepsias Mioclônicas , Epilepsias Mioclônicas Progressivas , Síndrome de Unverricht-Lundborg , Masculino , Adulto , Feminino , Humanos , Criança , Síndrome de Unverricht-Lundborg/genética , Estudos Retrospectivos , Epilepsias Mioclônicas Progressivas/genética , Epilepsias Mioclônicas/genética , Testes Genéticos
3.
J Med Case Rep ; 18(1): 215, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649973

RESUMO

BACKGROUND: Dravet syndrome is an infantile-onset developmental and epileptic encephalopathy (DEE) characterized by drug resistance, intractable seizures, and developmental comorbidities. This article focuses on manifestations in two Indonesian children with Javanese ethnicity who experienced Dravet syndrome with an SCN1A gene mutation, presenting genetic analysis findings using next-generation sequencing. CASE PRESENTATION: We present a case series involving two Indonesian children with Javanese ethnicity whom had their first febrile seizure at the age of 3 months, triggered after immunization. Both patients had global developmental delay and intractable seizures. We observed distinct genetic findings in both our cases. The first patient revealed heterozygous deletion mutation in three genes (TTC21B, SCN1A, and SCN9A). In our second patient, previously unreported mutation was discovered at canonical splice site upstream of exon 24 of the SCN1A gene. Our patient's outcomes improved after therapeutic evaluation based on mutation findings When comparing clinical manifestations in our first and second patients, we found that the more severe the genetic mutation discovered, the more severe the patient's clinical manifestations. CONCLUSION: These findings emphasize the importance of comprehensive genetic testing beyond SCN1A, providing valuable insights for personalized management and tailored therapeutic interventions in patients with Dravet syndrome. Our study underscores the potential of next-generation sequencing in advancing genotype-phenotype correlations and enhancing diagnostic precision for effective disease management.


Assuntos
Epilepsias Mioclônicas , Canal de Sódio Disparado por Voltagem NAV1.1 , Humanos , Epilepsias Mioclônicas/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Masculino , Feminino , Lactente , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Indonésia , Anticonvulsivantes/uso terapêutico , Mutação , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Pré-Escolar
4.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38443186

RESUMO

Dravet syndrome (DS) is a neurodevelopmental disorder characterized by epilepsy, developmental delay/intellectual disability, and features of autism spectrum disorder, caused by heterozygous loss-of-function variants in SCN1A encoding the voltage-gated sodium channel α subunit Nav1.1. The dominant model of DS pathogenesis is the "interneuron hypothesis," whereby GABAergic interneurons (INs) express and preferentially rely on Nav1.1-containing sodium channels for action potential (AP) generation. This has been shown for three of the major subclasses of cerebral cortex GABAergic INs: those expressing parvalbumin (PV), somatostatin, and vasoactive intestinal peptide. Here, we define the function of a fourth major subclass of INs expressing neuron-derived neurotrophic factor (Ndnf) in male and female DS (Scn1a+/-) mice. Patch-clamp electrophysiological recordings of Ndnf-INs in brain slices from Scn1a+/â mice and WT controls reveal normal intrinsic membrane properties, properties of AP generation and repetitive firing, and synaptic transmission across development. Immunohistochemistry shows that Nav1.1 is strongly expressed at the axon initial segment (AIS) of PV-expressing INs but is absent at the Ndnf-IN AIS. In vivo two-photon calcium imaging demonstrates that Ndnf-INs in Scn1a+/â mice are recruited similarly to WT controls during arousal. These results suggest that Ndnf-INs are the only major IN subclass that does not prominently rely on Nav1.1 for AP generation and thus retain their excitability in DS. The discovery of a major IN subclass with preserved function in the Scn1a+/â mouse model adds further complexity to the "interneuron hypothesis" and highlights the importance of considering cell-type heterogeneity when investigating mechanisms underlying neurodevelopmental disorders.


Assuntos
Modelos Animais de Doenças , Epilepsias Mioclônicas , Interneurônios , Canal de Sódio Disparado por Voltagem NAV1.1 , Animais , Interneurônios/metabolismo , Interneurônios/fisiologia , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/fisiopatologia , Epilepsias Mioclônicas/metabolismo , Epilepsias Mioclônicas/patologia , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Feminino , Masculino , Potenciais de Ação/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
5.
Epilepsia ; 65(4): 1046-1059, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38410936

RESUMO

OBJECTIVE: SCN1A variants are associated with epilepsy syndromes ranging from mild genetic epilepsy with febrile seizures plus (GEFS+) to severe Dravet syndrome (DS). Many variants are de novo, making early phenotype prediction difficult, and genotype-phenotype associations remain poorly understood. METHODS: We assessed data from a retrospective cohort of 1018 individuals with SCN1A-related epilepsies. We explored relationships between variant characteristics (position, in silico prediction scores: Combined Annotation Dependent Depletion (CADD), Rare Exome Variant Ensemble Learner (REVEL), SCN1A genetic score), seizure characteristics, and epilepsy phenotype. RESULTS: DS had earlier seizure onset than other GEFS+ phenotypes (5.3 vs. 12.0 months, p < .001). In silico variant scores were higher in DS versus GEFS+ (p < .001). Patients with missense variants in functionally important regions (conserved N-terminus, S4-S6) exhibited earlier seizure onset (6.0 vs. 7.0 months, p = .003) and were more likely to have DS (280/340); those with missense variants in nonconserved regions had later onset (10.0 vs. 7.0 months, p = .036) and were more likely to have GEFS+ (15/29, χ2 = 19.16, p < .001). A minority of protein-truncating variants were associated with GEFS+ (10/393) and more likely to be located in the proximal first and last exon coding regions than elsewhere in the gene (9.7% vs. 1.0%, p < .001). Carriers of the same missense variant exhibited less variability in age at seizure onset compared with carriers of different missense variants for both DS (1.9 vs. 2.9 months, p = .001) and GEFS+ (8.0 vs. 11.0 months, p = .043). Status epilepticus as presenting seizure type is a highly specific (95.2%) but nonsensitive (32.7%) feature of DS. SIGNIFICANCE: Understanding genotype-phenotype associations in SCN1A-related epilepsies is critical for early diagnosis and management. We demonstrate an earlier disease onset in patients with missense variants in important functional regions, the occurrence of GEFS+ truncating variants, and the value of in silico prediction scores. Status epilepticus as initial seizure type is a highly specific, but not sensitive, early feature of DS.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Convulsões Febris , Estado Epiléptico , Humanos , Estudos Retrospectivos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsia/genética , Epilepsia/diagnóstico , Epilepsias Mioclônicas/genética , Convulsões Febris/genética , Fenótipo , Estudos de Associação Genética , Mutação/genética
6.
Sci Prog ; 107(1): 368504231225076, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38373395

RESUMO

Dravet Syndrome (DS) is a severe developmental epileptic encephalopathy with frequent intractable seizures accompanied by cognitive impairment, often caused by pathogenic variants in SCN1A encoding sodium channel NaV1.1. Recent research utilizing in vitro patient-derived neuronal networks and accompanying in silico models uncovered that not just sodium-but also potassium-and synaptic currents were impaired in DS networks. Here, we explore the implications of these findings for three questions that remain elusive in DS: How do sodium channel impairments result in epilepsy? How can identical variants lead to varying phenotypes? What mechanisms underlie the developmental delay in DS patients? We speculate that impaired potassium currents might be a secondary effect to NaV1.1 mutations and could result in hyperexcitable neurons and epileptic networks. Moreover, we reason that homeostatic plasticity is actively engaged in DS networks, possibly affecting the phenotype and impairing learning and development when driven to extremes.


Assuntos
Epilepsias Mioclônicas , Humanos , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/patologia , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Neurônios/patologia , Neurônios/fisiologia , Mutação , Fenótipo , Potássio
7.
Seizure ; 115: 81-86, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232648

RESUMO

OBJECTIVE: We aimed to compare the electroclinical correlates of truncating and missense variants of SCN1A variants in children with Dravet syndrome (DS) and to determine phenotypic features in relation to variants identified and seizure outcomes. METHODS: A single center prospective study was carried out on a South Indian cohort. Patients below 18 years of age who met the clinical criteria for DS who had undergone genetic testing and completed a minimum of one year follow up were included. We compared the differences in clinical profile, seizure outcome, developmental characteristics and anti-seizure medication (ASM) responsiveness profiles between patients with missense and truncating variants. RESULTS: Out of a total of 3967 children with drug-resistant epilepsy during the period 2015-2021, 49 patients who fulfilled the inclusion criteria were studied. Thirty-seven had positive genetic tests, out of which 29 were SCN1A variants and 9 were other novel variants. The proportion of missense (14; 48.3%) and truncating SCN1A variants (15; 51.7%) was similar. A significant trend for developing multiple seizure types was noted among children with truncating variants (p = 0.035) and seizure freedom was more likely among children with missense variants (p = 0.042). All patients with truncating variants had ASM resistant epilepsy (p = 0.020). Developmental outcomes did not differ between the variant subtypes. CONCLUSION: Our results show that children harbouring missense variants demonstrated a significantly lower propensity for multiple seizure subtypes and a higher proportion with seizure freedom. However developmental implications appear to be independent of variant subtype.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Mioclônicas , Criança , Humanos , Estudos de Coortes , Estudos Prospectivos , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/tratamento farmacológico , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Fenótipo , Convulsões , Mutação/genética
8.
Epilepsia ; 65(3): 709-724, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38231304

RESUMO

OBJECTIVE: KCTD7-related progressive myoclonic epilepsy (PME) is a rare autosomal-recessive disorder. This study aimed to describe the clinical details and genetic variants in a large international cohort. METHODS: Families with molecularly confirmed diagnoses of KCTD7-related PME were identified through international collaboration. Furthermore, a systematic review was done to identify previously reported cases. Salient demographic, epilepsy, treatment, genetic testing, electroencephalographic (EEG), and imaging-related variables were collected and summarized. RESULTS: Forty-two patients (36 families) were included. The median age at first seizure was 14 months (interquartile range = 11.75-22.5). Myoclonic seizures were frequently the first seizure type noted (n = 18, 43.9%). EEG and brain magnetic resonance imaging findings were variable. Many patients exhibited delayed development with subsequent progressive regression (n = 16, 38.1%). Twenty-one cases with genetic testing available (55%) had previously reported variants in KCTD7, and 17 cases (45%) had novel variants in KCTD7 gene. Six patients died in the cohort (age range = 1.5-21 years). The systematic review identified 23 eligible studies and further identified 59 previously reported cases of KCTD7-related disorders from the literature. The phenotype for the majority of the reported cases was consistent with a PME (n = 52, 88%). Other reported phenotypes in the literature included opsoclonus myoclonus ataxia syndrome (n = 2), myoclonus dystonia (n = 2), and neuronal ceroid lipofuscinosis (n = 3). Eight published cases died over time (14%, age range = 3-18 years). SIGNIFICANCE: This study cohort and systematic review consolidated the phenotypic spectrum and natural history of KCTD7-related disorders. Early onset drug-resistant epilepsy, relentless neuroregression, and severe neurological sequalae were common. Better understanding of the natural history may help future clinical trials.


Assuntos
Epilepsias Mioclônicas , Epilepsias Mioclônicas Progressivas , Síndrome de Unverricht-Lundborg , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , Adulto Jovem , Eletroencefalografia , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas Progressivas/genética , Canais de Potássio/genética , Convulsões
9.
BMC Neurol ; 24(1): 9, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166833

RESUMO

BACKGROUND: Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a rare genetic disorder characterized by progressive cognitive decline and myoclonic epilepsy, caused by pathogenic variants of SERPINI1. We reported a case of genetically confirmed FENIB with de novo H338R mutation in the SERPINI1, in which frontal deficits including inattention and disinhibition, and relevant atrophy in the vmPFC on brain MRI were observed in the early stage of the disease. CASE PRESENTATION: A 23-year-old Japanese man presented with progressive inattention and disinhibition over 4 years followed by myoclonic epilepsy. The whole-genome sequencing and filtering analysis showed de novo heterozygous H338R mutation in the SERPINI1, confirming the diagnosis of FENIB. Single-case voxel-based morphometry using brain magnetic resonance imaging obtained at the initial visit revealed focal gray matter volume loss in the ventromedial prefrontal cortices, which is presumed to be associated with inattention and disinhibition. CONCLUSION: Frontal deficits including inattention and disinhibition can be the presenting symptoms of patients with FENIB. Single-case voxel-based morphometry may be useful for detecting regional atrophy of the frontal lobe in FENIB. Detecting these abnormalities in the early stage of disease may be key findings for differentiating FENIB from other causes of progressive myoclonic epilepsy.


Assuntos
Epilepsias Mioclônicas , Serpinas , Masculino , Humanos , Adulto Jovem , Adulto , 60586 , Epilepsias Mioclônicas/diagnóstico por imagem , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/patologia , Corpos de Inclusão/patologia , Imageamento por Ressonância Magnética/métodos
10.
J Med Case Rep ; 18(1): 3, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38167335

RESUMO

BACKGROUND: Dravet syndrome is a severe epilepsy disorder characterized by drug-resistant seizures and cognitive dysfunction, often caused by SCN1A gene mutations. It leads to neurodevelopmental delays and motor, behavioral, and cognitive impairments, with a high mortality rate. Treatment options include sodium valproate, clobazam, and newer agents such as cannabidiol and fenfluramine. Zonisamide, which is used in some cases, can cause hyperthermia and oligohydrosis. Herein, we present a case of a patient with Dravet syndrome whose seizures were controlled by treating infections and switching from zonisamide to perampanel. CASE PRESENTATION: A 24-year-old Japanese man with Dravet syndrome presented to our department with aspiration pneumonia. The patient had been treated with valproate, sodium bromide, and zonisamide for a long time. His seizures were triggered by hyperthermia. The patient was experiencing a sustained pattern of hyperthermia caused by infection, zonisamide, and persistent convulsions, which caused a vicious cycle of further seizures. In this case, the control of infection and switching from zonisamide to perampanel improved seizure frequency. CONCLUSION: Dravet syndrome usually begins with generalized clonic seizures in its infancy because of fever and progresses to various seizure types, often triggered by fever or seizure-induced heat due to mutations in the SCN1A gene that increases neuronal excitability. Seizures usually diminish with age, but the heat sensitivity remains. In this case, seizures were increased by repeated infections, and hyperthermia was induced by zonisamide, resulting in status epilepticus. Perampanel, an aminomethylphosphonic acid receptor antagonist, decreased seizures but caused psychiatric symptoms. It was effective in suppressing seizures of Dravet syndrome in this patient.


Assuntos
Epilepsias Mioclônicas , Hipertermia Induzida , Masculino , Humanos , Adulto Jovem , Adulto , Zonisamida/uso terapêutico , Epilepsias Mioclônicas/complicações , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Convulsões/tratamento farmacológico , Convulsões/etiologia , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Ácido Valproico/uso terapêutico , Hipertermia/tratamento farmacológico , Anticonvulsivantes/uso terapêutico
11.
Mol Biol Rep ; 51(1): 233, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282049

RESUMO

Dravet syndrome is a severe form of epilepsy characterised by recurrent seizures and cognitive impairment. It is mainly caused by variant in the SCN1A gene in 90% of cases, which codes for the α subunit of the voltage-gated sodium channel. In this study, we present one suspected case of Dravet syndrome in Moroccan child that underwent exome analysis and were confirmed by Sanger sequencing. The variant was identified in the SCN1A gene, and is a new variant that has never been described in the literature. The variant was found de nova in our case, indicating that it was not inherited from the parents. The variant, SCN1A c.965-2A>G p.(?), is located at the splice site and results in an unknown modification of the protein. This variant is considered pathogenic on the basis of previous studies. These results contribute to our knowledge of the SCN1A gene mutations associated with Dravet syndrome and underline the importance of genetic analysis in the diagnosis and confirmation of this disorder. Further studies are needed to better understand the functional consequences of this variant and its implications for therapeutic strategies in Dravet syndrome.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Criança , Humanos , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/diagnóstico , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsia/genética , Mutação/genética , Análise de Sequência , Convulsões
12.
Epilepsia ; 65(1): 204-217, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37746768

RESUMO

OBJECTIVE: γ-Aminobutyric acid type A (GABAA ) receptor subunit gene mutations are major causes of various epilepsy syndromes, including severe kinds such as Dravet syndrome. Although the GABAA receptor is a major target for antiseizure medications, treating GABAA receptor mutations with receptor channel modulators is ineffective. Here, we determined the effect of a novel treatment with 4-phenylbutyrate (PBA) in Gabrg2+/Q390X knockin mice associated with Dravet syndrome. METHODS: We used biochemistry in conjunction with differential tagging of the wild-type and the mutant alleles, live brain slice surface biotinylation, microsome isolation, patch-clamp whole-cell recordings, and video-monitoring synchronized electroencephalographic (EEG) recordings in Gabrg2+/Q390X mice to determine the effect of PBA in vitro with recombinant GABAA receptors and in vivo with knockin mice. RESULTS: We found that PBA reduced the mutant γ2(Q390X) subunit protein aggregates, enhanced the wild-type GABAA receptor subunits' trafficking, and increased the membrane expression of the wild-type receptors. PBA increased the current amplitude of GABA-evoked current in human embryonic kidney 293T cells and the neurons bearing the γ2(Q390X) subunit protein. PBA also proved to reduce endoplasmic reticulum (ER) stress caused by the mutant γ2(Q390X) subunit protein, as well as mitigating seizures and EEG abnormalities in the Gabrg2+/Q390X mice. SIGNIFICANCE: This research has unveiled a promising and innovative approach for treating epilepsy linked to GABAA receptor mutations through an unconventional antiseizure mechanism. Rather than directly modulating the affected mutant channel, PBA facilitates the folding and transportation of wild-type receptor subunits to the cell membrane and synapse. Combining these findings with our previous study, which demonstrated PBA's efficacy in restoring GABA transporter 1 (encoded by SLC6A1) function, we propose that PBA holds significant potential for a wide range of genetic epilepsies. Its ability to target shared molecular pathways involving mutant protein ER retention and impaired protein membrane trafficking suggests broad application in treating such conditions.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Fenilbutiratos , Camundongos , Humanos , Animais , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de GABA/metabolismo , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/complicações , Convulsões/complicações , Epilepsia/genética , Ácido gama-Aminobutírico , Estresse do Retículo Endoplasmático/genética
13.
Ann Clin Transl Neurol ; 11(2): 414-423, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38059543

RESUMO

OBJECTIVES: To investigate and characterize epileptic seizures and electrophysiological features of familial cortical myoclonic tremor with epilepsy (FCMTE) type 1 patients in a large Chinese cohort. METHODS: We systematically evaluated 125 FCMTEtype 1 patients carrying the pentanucleotide (TTTCA) repeat expansion in the SAMD12 gene in China. RESULTS: Among the 28 probands, epileptic seizures (96.4%, 27/28) were the most common reason for an initial clinic visit. Ninety-seven (77.6%, 97/125) patients had experienced seizures. The seizures onset age was 36.5 ± 9.0 years, which was 6.9 years later than cortical tremors. The seizures were largely rare (<1/year, 58.8%) and occasional (1-6/year, 37.1%). Prolonged prodromes were reported in 57.7% (56/97). Thirty-one patients (24.8%, 31/125) reported photosensitivity history, and 79.5% (31/39) had a photoparoxysmal response. Interictal epileptiform discharges (IEDs) were recorded in 69.1% (56/81) of patients. Thirty-three patients showed generalized IEDs and 72.7% (24/33) were occipitally dominant, while 23 patients presented with focal IEDs with 65.2% (15/23) taking place over the occipital lobe. Overnight EEG of FCMTE patients displayed paradoxical sleep-wake fluctuation, with a higher average IED index of 0.82 ± 0.88/min during wakefulness and a lower IED index of 0.04 ± 0.06/min during non-rapid eye movement sleep stages I-II. INTERPRETATION: FCMTE type 1 has a benign course of epilepsy and distinct clinical and electrophysiological features. In addition to a positive family history and cortical myoclonus tremor, the seizure prodromes, specific seizure triggers, photosensitivity, distribution of IEDs, and unique fluctuations during sleep-wake cycle are cues for proper genetic testing and an early diagnosis of FCMTE.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Humanos , Adulto , Pessoa de Meia-Idade , Tremor/genética , Epilepsias Mioclônicas/genética , Convulsões
14.
Epilepsy Res ; 199: 107266, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061235

RESUMO

INTRODUCTION: Neuropathological findings in Dravet Syndrome (DS) are scarce, especially in adult patients, and often do not have a genetic confirmation. Additionally, the missense SCN1A pathogenic variant found has only been described as de novo mutation in previous literature. METHODS: We describe the clinical and genetic findings of a family (including three sisters and his father), using Sanger sequencing in the three sisters and in postmortem brain tissue in the father. The present study also shows the neuropathological findings of the father. RESULTS: Despite the presence of long term drug resistant epilepsy, starting with febrile seizures between 6 and 12 months of age, and intellectual disability (ID), the three sisters were diagnosed with DS in adulthood, identifying a missense SCN1A pathogenic variant in exon 20, previously described as de novo -p.Gly1332Glu (c .3995 G>A). The oldest sister had the most severe phenotype, with severe ID and wheel chair dependency, passing away at 52. The other two sisters had a moderate phenotype, being at the present seizure free, but with significant comorbidities, such as crouch gait and parkinsonism. Several relatives from the paternal path (including the father) presented epilepsy, but without ID. The father was diagnosed with Alzheimer´s Disease (AD) at 60, and because he donated his brain, the same variant was confirmed in postmortem study. Neither the MRI nor the histopathology showed specific morphological changes for DS, consistent with previous studies. CONCLUSIONS: This work supports the need to review the clinical and genetic spectra of DS in adults with epilepsy and unknown ID. The clinical consequences of this syndrome seem to have a functional rather than a structural basis, supported by the absence of specific neuropathological findings.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Adulto , Humanos , Masculino , Epilepsias Mioclônicas/genética , Mutação , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Fenótipo , Lactente
16.
Epilepsia ; 65(2): 322-337, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38049202

RESUMO

OBJECTIVE: Dravet syndrome (DS) is a developmental and epileptic encephalopathy characterized by high seizure burden, treatment-resistant epilepsy, and developmental stagnation. Family members rate communication deficits among the most impactful disease manifestations. We evaluated seizure burden and language/communication development in children with DS. METHODS: ENVISION was a prospective, observational study evaluating children with DS associated with SCN1A pathogenic variants (SCN1A+ DS) enrolled at age ≤5 years. Seizure burden and antiseizure medications were assessed every 3 months and communication and language every 6 months with the Bayley Scales of Infant and Toddler Development 3rd edition and the parent-reported Vineland Adaptive Behavior Scales 3rd edition. We report data from the first year of observation, including analyses stratified by age at Baseline: 0:6-2:0 years:months (Y:M; youngest), 2:1-3:6 Y:M (middle), and 3:7-5:0 Y:M (oldest). RESULTS: Between December 2020 and March 2023, 58 children with DS enrolled at 16 sites internationally. Median follow-up was 17.5 months (range = .0-24.0), with 54 of 58 (93.1%) followed for at least 6 months and 51 of 58 (87.9%) for 12 months. Monthly countable seizure frequency (MCSF) increased with age (median [minimum-maximum] = 1.0 in the youngest [1.0-70.0] and middle [1.0-242.0] age groups and 4.5 [.0-2647.0] in the oldest age group), and remained high, despite use of currently approved antiseizure medications. Language/communication delays were observed early, and developmental stagnation occurred after age 2 years with both instruments. In predictive modeling, chronologic age was the only significant covariate of seizure frequency (effect size = .52, p = .024). MCSF, number of antiseizure medications, age at first seizure, and convulsive status epilepticus were not predictors of language/communication raw scores. SIGNIFICANCE: In infants and young children with SCN1A+ DS, language/communication delay and stagnation were independent of seizure burden. Our findings emphasize that the optimal therapeutic window to prevent language/communication delay is before 3 years of age.


Assuntos
Epilepsias Mioclônicas , Lactente , Humanos , Pré-Escolar , Recém-Nascido , Estudos Prospectivos , Mutação , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/complicações , Convulsões/tratamento farmacológico , Convulsões/genética , Convulsões/complicações , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Comunicação
17.
Clin Transl Sci ; 17(1): e13679, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37955180

RESUMO

Dravet syndrome and genetic epilepsy with febrile seizures plus (GEFS+) are both epilepsy syndromes that can be attributed to deleterious mutations occurring in SCN1A, the gene encoding the pore-forming α-subunit of the NaV 1.1 voltage-gated sodium channel predominantly expressed in the central nervous system. In this research endeavor, our goal is to expand our prior cohort of Turkish patients affected by SCN1A-positive genetic epilepsy disorders. This will be accomplished by incorporating two recently discovered and infrequent index cases who possess a novel biallelic (homozygous) SCN1A missense variant, namely E158G, associated with Dravet syndrome. Furthermore, our intention is to use computational techniques to predict the molecular phenotypes of each distinct SCN1A variant that has been detected to date within our center. The correlation between genotype and phenotype in Dravet syndrome/GEFS+ is intricate and necessitates meticulous clinical investigation as well as advanced scientific exploration. Broadened mechanistic and structural insights into NaV 1.1 dysfunction offer significant promise in facilitating the development of targeted and effective therapies, which will ultimately enhance clinical outcomes in the treatment of epilepsy.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Síndromes Epilépticas , Humanos , Epilepsias Mioclônicas/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Síndromes Epilépticas/genética , Epilepsia/genética , Fenótipo , Mutação de Sentido Incorreto , Mutação
18.
Mov Disord ; 39(1): 164-172, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994247

RESUMO

BACKGROUND: Benign adult familial myoclonic epilepsy (BAFME) is an autosomal dominant disorder characterized by cortical tremors and seizures. Six types of BAFME, all caused by pentanucleotide repeat expansions in different genes, have been reported. However, several other BAFME cases remain with no molecular diagnosis. OBJECTIVES: We aim to characterize clinical features and identify the mutation causing BAFME in a large Malian family with 10 affected members. METHODS: Long-read whole genome sequencing, repeat-primed polymerase chain reaction and RNA studies were performed. RESULTS: We identified TTTTA repeat expansions and TTTCA repeat insertions in intron 4 of the RAI1 gene that co-segregated with disease status in this family. TTTCA repeats were absent in 200 Malian controls. In the affected individuals, we found a read with only nine TTTCA repeat units and somatic instability. The RAI1 repeat expansions cause the only BAFME type in which the disease-causing repeats are in a gene associated with a monogenic disorder in the haploinsufficiency state (ie, Smith-Magenis syndrome [SMS]). Nevertheless, none of the Malian patients exhibited symptoms related to SMS. Moreover, leukocyte RNA levels of RAI1 in six Malian BAFME patients were no different from controls. CONCLUSIONS: These findings establish a new type of BAFME, BAFME8, in an African family and suggest that haploinsufficiency is unlikely to be the main pathomechanism of BAFME. © 2023 International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Epilepsias Mioclônicas , Adulto , Humanos , Epilepsias Mioclônicas/genética , Íntrons , Repetições de Microssatélites , RNA , Convulsões/genética
19.
Seizure ; 114: 18-22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38035489

RESUMO

BACKGROUND: In Dravet syndrome (DS), EEGs evolve over time. OBJECTIVE: To describe a peculiar EEG pattern in two adults with a de novo SCN1A gene mutation, in exon 5 (case 1) and 9 (case 2). METHODS: Two female patients underwent a prolonged video EEG (24 h) as part of their epilepsy assessment. RESULTS: In both cases, the EEG showed a very peculiar and stereotypical pattern of bilateral synchronous spikes at about 5-6 Hz. This activity was present during wakefulness and highly activated at sleep onset and in NREM sleep, which could show nearly continuous spike activity. This activity dramatically decreased in REM sleep and after awakening. This pattern of "dents de scie" (sawtooth) spikes maintained the same morphology throughout the entire EEG recording. In both patients, the spikes were favored by passive eye closure. During wakefulness, the spikes could evolve into atypical absences while keeping the same "dents de scie" pattern. Neither patient had tonic or myoclonic seizures at the time of the EEG assessment. Both were moderately retarded, and neither one had a typical DS gait disorder. Previous EEG recordings of case 1 performed at 9.5 and 18.5 years showed spike-waves, but the morphology did not correspond to the EEG recording observed at 22 years. CONCLUSIONS: Both patients have a similar electro-clinical phenotype. This "dents de scie" pattern appears to be very specific and could be pathognomonic in a subgroup of young adults with DS. Results of sleep EEG recording could be added to the diagnostic criteria for this syndrome.


Assuntos
Eletroencefalografia , Epilepsias Mioclônicas , Humanos , Feminino , Adulto Jovem , Eletroencefalografia/métodos , Epilepsias Mioclônicas/diagnóstico , Epilepsias Mioclônicas/genética , Convulsões/diagnóstico , Sono , Vigília
20.
Epilepsy Behav ; 150: 109553, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38035538

RESUMO

Dravet syndrome (DS) is a genetic rare disease, which is usually caused by a mutation in the SCN1A gene. DS is characterised by a drug-resistant epilepsy and by cognitive and behavioural disturbances. Thus, DS patients require both pharmacological and non-pharmacological treatments. However, there is a paucity of studies on non-pharmacological therapies and their potential benefits. The main aim of this study was to describe the non-pharmacological therapy modalities received by DS patients and their socio-economic impact on the family. Thus, we designed an online survey addressed to caregivers of DS patients. Our results indicated that up to 91.9% of the surveyed patients required non-pharmacological therapies, which were mainly directed to treat cognitive, sensory and motor impairments. In many cases, the economic costs of these therapies were borne entirely by the families. Nevertheless, patients required a deployment of resources not only at a health care level, but also at an educational level.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Mioclônicas , Humanos , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/terapia , Qualidade de Vida/psicologia , Inquéritos e Questionários , Nível de Saúde , Canal de Sódio Disparado por Voltagem NAV1.1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...